Shortest Vector from Lattice Sieving: a Few Dimensions for Free
نویسنده
چکیده
Asymptotically, the best known algorithms for solving the Shortest Vector Problem (SVP) in a lattice of dimension n are sieve algorithms, which have heuristic complexity estimates ranging from (4/3) down to (3/2) when Locality Sensitive Hashing techniques are used. Sieve algorithms are however outperformed by pruned enumeration algorithms in practice by several orders of magnitude, despite the larger super-exponential asymptotical complexity 2 logn) of the latter. In this work, we show a concrete improvement of sieve-type algorithms. Precisely, we show that a few calls to the sieve algorithm in lattices of dimension less than n− d solves SVP in dimension n, where d = Θ(n/ logn). Although our improvement is only sub-exponential, its practical effect in relevant dimensions is quite significant. We implemented it over a simple sieve algorithm with (4/3) complexity, and it outperforms the best sieve algorithms from the literature by a factor of 10 in dimensions 70-80. It performs less than an order of magnitude slower than pruned enumeration in the same range. By design, this improvement can also be applied to most other variants of sieve algorithms, including LSH sieve algorithms and tuple-sieve algorithms. In this light, we may expect sievetechniques to outperform pruned enumeration in practice in the near future.
منابع مشابه
Tuple lattice sieving
Lattice sieving is asymptotically the fastest approach for solving the shortest vector problem (SVP) on Euclidean lattices. All known sieving algorithms for solving the SVP require space which (heuristically) grows as 2, where n is the lattice dimension. In high dimensions, the memory requirement becomes a limiting factor for running these algorithms, making them uncompetitive with enumeration ...
متن کاملSieving for Shortest Vectors in Lattices Using Angular Locality-Sensitive Hashing
By replacing the brute-force list search in sieving algorithms with Charikar’s angular localitysensitive hashing (LSH) method, we get both theoretical and practical speedups for solving the shortest vector problem (SVP) on lattices. Combining angular LSH with a variant of Nguyen and Vidick’s heuristic sieve algorithm, we obtain heuristic time and space complexities for solving SVP in dimension ...
متن کاملTuning GaussSieve for Speed
The area of lattice-based cryptography is growing ever-more prominent as a paradigm for quantum-resistant cryptography. One of the most important hard problem underpinning the security of latticebased cryptosystems is the shortest vector problem (SVP). At present, two approaches dominate methods for solving instances of this problem in practice: enumeration and sieving. In 2010, Micciancio and ...
متن کاملFinding closest lattice vectors using approximate Voronoi cells
The two classical hard problems underlying the security of lattice-based cryptography are the shortest vector problem (SVP) and the closest vector problem (CVP). For SVP, lattice sieving currently has the best (heuristic) asymptotic time complexity: in high dimensions d, sieving can solve SVP in time 2, using 2 memory [Becker– Ducas–Gama–Laarhoven, SODA’16]. The best heuristic time complexity t...
متن کاملFaster algorithms for SVP and CVP in the $\ell_{\infty}$ norm
Blomer and Naewe[BN09] modified the randomized sieving algorithm of Ajtai, Kumar and Sivakumar[AKS01] to solve the shortest vector problem (SVP). The algorithm starts with $N = 2^{O(n)}$ randomly chosen vectors in the lattice and employs a sieving procedure to iteratively obtain shorter vectors in the lattice. The running time of the sieving procedure is quadratic in $N$. We study this problem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017